Zeeschuimer (“sea foamer”) is a web browser extension from the Digital Methods Initiative in Amsterdam that enables you to collect data while you are browsing social media sites for research and analysis.
It currently works for platforms such as TikTok, Instagram, Twitter and LinkedIn and provides an ndjson file which can be imported into the open source 4CAT: Capture and Analysis Toolkit for analysis.
To make data gathered with Zeeschuimer more accessible for for researchers, reporters, students, and others to work with, we’ve created zeehaven (“sea port”) – a tiny web-based tool to convert ndjson into csv format, which is easier to explore with spreadsheets as well as common data analysis and visualisation software.
Drag and drop a ndjson file into the “sea port” and the tool will prompt you to save a csv file. ✨📦✨
The article explores testing situations – moments in which it is no longer possible to go on in the usual way – across scales during the COVID-19 pandemic through interpretive querying and sub-setting of Twitter data (“data teasing”), together with situational image analysis.
The full text is available open access here. Further details and links can be found at this project page. The abstract and reference are copied below.
How was testing—and not testing—for coronavirus articulated as a testing situation on social media in the Spring of 2020? Our study examines everyday situations of Covid-19 testing by analyzing a large corpus of Twitter data collected during the first 2 months of the pandemic. Adopting a sociological definition of testing situations, as moments in which it is no longer possible to go on in the usual way, we show how social media analysis can be used to surface a range of such situations across scales, from the individual to the societal. Practicing a form of large-scale data exploration we call “interpretative querying” within the framework of situational analysis, we delineated two types of coronavirus testing situations: those involving locations of testing and those involving relations. Using lexicon analysis and composite image analysis, we then determined what composes the two types of testing situations on Twitter during the relevant period. Our analysis shows that contrary to the focus on individual responsibility in UK government discourse on Covid-19 testing, English-language Twitter reporting on coronavirus testing at the time thematized collective relations. By a variety of means, including in-memoriam portraits and infographics, this discourse rendered explicit challenges to societal relations and arrangements arising from situations of testing and not testing for Covid-19 and highlighted the multifaceted ways in which situations of corona testing amplified asymmetrical distributions of harms and benefits between different social groupings, and between citizens and state, during the first months of the pandemic.
Marres, N., Colombo, G., Bounegru, L., Gray, J. W. Y., Gerlitz, C., & Tripp, J. (2023). Testing and Not Testing for Coronavirus on Twitter: Surfacing Testing Situations Across Scales With Interpretative Methods. Social Media + Society, 9(3). https://doi.org/10.1177/20563051231196538
“For decades, social researchers have argued that there is much to be learned when things go wrong.Âą In this essay, we explore what can be learned about algorithms when things do not go as anticipated, and propose the concept of algorithm troubleto capture how everyday encounters with artificial intelligence might manifest, at interfaces with users, as unexpected, failing, or wrong events. The word trouble designates a problem, but also a state of confusion and distress. We see algorithm troubles as failures, computer errors, “bugs,” but also as unsettling events that may elicit, or even provoke, other perspectives on what it means to live with algorithms — including through different ways in which these troubles are experienced, as sources of suffering, injustice, humour, or aesthetic experimentation (Meunier et al., 2019). In mapping how problems are produced, the expression algorithm trouble calls attention to what is involved in algorithms beyond computational processes. It carries an affective charge that calls upon the necessity to care about relations with technology, and not only to fix them (Bellacasa, 2017).”