Critical Technical Practice(s) in Digital Research- special issue in Convergence

A special issue on “Critical Technical Practice(s) in Digital Research” co-edited by Public Data Lab members Daniela van Geenen, Karin van Es and Jonathan W. Y. Gray has been published in Convergence: https://journals.sagepub.com/toc/cona/30/1.

The special issue explores the pluralisation of “critical technical practice”, starting from its early formulations by Philip Agre in the context of AI research and development to the many ways in which it has resonated and been taken up by different publications, projects, groups, and communities of practice, and what it has come to mean. This special issue serves as an invitation to reconsider what it means to use this notion drawing on a wider body of work, including beyond Agre.

A special issue introduction explores critical technical practices according to (1) Agre, (2) indexed research, and (3) contributors to the special issue, before concluding with questions and considerations for those interested in working with this notion.

The issue features contributions on machine learning, digital methods, art-based interventions, one-click network trouble, web page snapshotting, social media tool-making, sensory media, supercuts, climate futures and more. Contributors include Tatjana Seitz & Sam Hind; Michael Dieter; Jean-Marie John-Mathews, Robin De Mourat, Donato Ricci & Maxime Crépel; Anders Koed Madsen; Winnie Soon & Pablo Velasco; Mathieu Jacomy & Anders Munk; Jessica Ogden, Edward Summers & Shawn Walker; Urszula Pawlicka-Deger; Simon Hirsbrunner, Michael Tebbe & Claudia Müller-Birn; Bernhard Rieder, Erik Borra & Stijn Peters; Carolin Gerlitz, Fernando van der Vlist & Jason Chao; Daniel Chavez Heras; and Sabine Niederer & Natalia Sanchez Querubin. 

There will be a hybrid event to launch the special issue on 10 July, 2-4 pm CEST.

Links to the articles and our evolving library can be found here:
https://publicdatalab.org/projects/pluralising-critical-technical-practices/.

If you’re interested in critical technical practices and you’d like to follow work in this area, we’ve set up a new mailing list here for sharing projects, publications, events and other activities: https://jiscmail.ac.uk/CRITICAL-TECHNICAL-PRACTICES

Image credit: “All Gone Tarot Deck” co-created by Carlo De Gaetano, Natalia Sánchez Querubín, Sabine Niederer and the Visual Methodologies Collective from Climate futures: Machine learning from cli-fi, one of the special issue articles.

New article on cross-platform bot studies published in special issue about visual methods

An article on “Quali-quanti visual methods and political bots: A cross-platform study of pro- & anti- bolsobots” has just been published in the special issue “Methods in Visual Politics and Protest” of the Journal of Digital Social Research, co-authored by Public Data Lab associates Janna Joceli Omena, Thais Lobo, Giulia Tucci, Elias Bitencourt, Emillie de Keulenaar, Francisco W. Kerche, Jason Chao, Marius Liedtke, Mengying Li, Maria Luiza Paschoal, and Ilya Lavrov.

The article provides methodological contributions for interpreting bot-associated image collections and textual content across Instagram, TikTok and Twitter/X, building on a series of data sprints conducted as part of the Public Data Lab “Profiling Bolsobot Networks” project.

The full text is available open access here. Further details and links can be found at the project page. Below is the abstract:

Computational social science research on automated social media accounts, colloquially dubbed “bots”, has tended to rely on binary verification methods to detect bot operations on social media. Typically focused on textual data from Twitter (now rebranded as “X”), these methods are prone to finding false positives and failing to understand the subtler ways in which bots operate over time and in particular contexts. This research paper brings methodological contributions to such studies, focusing on what it calls “bolsobots” in Brazilian social media. Named after former Brazilian President Jair Bolsonaro, the bolsobots refer to the extensive and skilful usage of partial or fully automated accounts by marketing teams, hackers, activists or campaign supporters. These accounts leverage organic online political culture to sway public opinion for or against policies, opposition figures, or Bolsonaro himself. Drawing on empirical case studies, this paper implements quali-quanti visual methods to operationalise specific techniques for interpreting bot-associated image collections and textual content across Instagram, TikTok and Twitter/X. To unveil the modus operandi of bolsobots, we map the networks of users they follow (“following networks”), explore the visual-textual content they post, and observe the strategies they deploy to adapt to platform content moderation. Such analyses tackle methodological challenges inherent in bot studies by employing three key strategies: 1) designing context-sensitive queries and curating datasets with platforms’ interfaces and search engines to mitigate the limitations of bot scoring detectors, 2) engaging qualitatively with data visualisations to understand the vernaculars of bots, and 3) adopting a non-binary analysis framework that contextualises bots within their socio-technical environments. By acknowledging the intricate interplay between bots, user and platform cultures, this paper contributes to method innovation on bot studies and emerging quali-quanti visual methods literature.

New article on GitHub and the platformisation of software development

An article on “The platformisation of software development: Connective coding and platform vernaculars on GitHub” by Liliana Bounegru has just been published in Convergence: The International Journal of Research into New Media Technologies.

The article is accompanied by a set of free tools for researching Github co-developed by Liliana with the Digital Methods Initiative – including to:

  • Extract the meta-data of organizations on Github
  • Extract the meta-data of Github repositories
  • Scrape Github for forks of projects
  • Scrape Github for user interactions and user to repository relations
  • Extract meta-data about users on Github
  • Find out which users contributed source code to Github repositories

The article is available open access here. The abstract is copied below.

This article contributes to recent scholarship on platform, software and media studies by critically engaging with the ‘social coding’ platform GitHub, one of the most prominent actors in the online proprietary and F/OSS (free and/or open-source software) code hosting space. It examines the platformisation of software and project development on GitHub by combining institutional and cultural analysis. The institutional analysis focuses on critically examining the platform from a material-economic perspective to understand how it configures contemporary software and project development work. It proposes the concept of ‘connective coding’ to characterise how software intermediaries such as GitHub configure, valorise and capitalise on public repositories, developer and organisation profiles. This institutional perspective is complemented by a case study analysing cultural practices mediated by the platform. The case study examines the platform vernaculars of news media and journalism initiatives highlighted by Source, a key publication in the newsroom software development space, and how GitHub modulates visibility in this space. It finds that the high-visibility platform vernacular of this news media and journalism space is dominated by a mix of established actors such as the New York Times, the Guardian and Bloomberg, as well as more recent actors and initiatives such as ProPublica and Document Cloud. This high-visibility news media and journalism platform vernacular is characterised by multiple F/OSS and F/OSS-inspired practices and styles. Finally, by contrast, low-visibility public repositories in this space may be seen as indicative of GitHub’s role in facilitating various kinds of ‘post-F/OSS’ software development cultures.

Article on COVID-19 testing situations on Twitter published in Social Media + Society

An article on “Testing and Not Testing for Coronavirus on Twitter: Surfacing Testing Situations Across Scales With Interpretative Methods” has just been published in Social Media + Society, co-authored by Noortje MarresGabriele ColomboLiliana BounegruJonathan W. Y. Gray, Carolin Gerlitz and James Tripp, building on a series of workshops in Warwick, Amsterdam, St Gallen and Siegen.

The article explores testing situations – moments in which it is no longer possible to go on in the usual way – across scales during the COVID-19 pandemic through interpretive querying and sub-setting of Twitter data (“data teasing”), together with situational image analysis.

The full text is available open access here. Further details and links can be found at this project page. The abstract and reference are copied below.

How was testing—and not testing—for coronavirus articulated as a testing situation on social media in the Spring of 2020? Our study examines everyday situations of Covid-19 testing by analyzing a large corpus of Twitter data collected during the first 2 months of the pandemic. Adopting a sociological definition of testing situations, as moments in which it is no longer possible to go on in the usual way, we show how social media analysis can be used to surface a range of such situations across scales, from the individual to the societal. Practicing a form of large-scale data exploration we call “interpretative querying” within the framework of situational analysis, we delineated two types of coronavirus testing situations: those involving locations of testing and those involving relations. Using lexicon analysis and composite image analysis, we then determined what composes the two types of testing situations on Twitter during the relevant period. Our analysis shows that contrary to the focus on individual responsibility in UK government discourse on Covid-19 testing, English-language Twitter reporting on coronavirus testing at the time thematized collective relations. By a variety of means, including in-memoriam portraits and infographics, this discourse rendered explicit challenges to societal relations and arrangements arising from situations of testing and not testing for Covid-19 and highlighted the multifaceted ways in which situations of corona testing amplified asymmetrical distributions of harms and benefits between different social groupings, and between citizens and state, during the first months of the pandemic.

Marres, N., Colombo, G., Bounegru, L., Gray, J. W. Y., Gerlitz, C., & Tripp, J. (2023). Testing and Not Testing for Coronavirus on Twitter: Surfacing Testing Situations Across Scales With Interpretative Methods. Social Media + Society, 9(3). https://doi.org/10.1177/20563051231196538

Working paper on “Testing ‘AI’: Do we have a situation?”

A new working paper on “Testing ‘AI’: Do We Have a Situation?” based on conversation between Noortje Marres and Philippe Sormani has just been published as part of a working paper series from “Media of Cooperation” at the University of Siegen. The paper can be found here and further details are copied below.

The new publication »Testing ‘AI’: Do We Have a Situation?« of the Working Paper Series (No. 28, June 2023) is based on the transcription of a recent conversation between the authors Noortje Marres und Philippe Sormani regarding current instances of the real-world testing of “AI” and the “situations” they have given rise to or as the case may be not. The conversation took place online on the 25th of May 2022 as part of the Lecture Series “Testing Infrastructures” organized by the Collaborative Research Center (CRC) 1187 “Media of Cooperation” at the University of Siegen Germany. This working paper is an elaborated version of this conversation.

In their conversation Marres and Sormani discuss the social implications of AI based on three questions: First they return to a classic critique that sociologists and anthropologists have levelled at AI namely the claim that the ontology and epistemology underlying AI development is rationalist and individualist and as such is marked by blind spots for the social and in particular situated or situational embedding of AI (Suchman, 1987, 2007; Star, 1989). Secondly they delve into the issue of whether and how social studies of technology can account for AI testing in real-world settings in situational terms. And thirdly they ask the question of what does this tell us about possible tensions and alignments between different “definitions of the situation” assumed in social studies engineering and computer science in relation to AI. Finally they discuss the ramifications for their methodological commitment to “the situation” in the social study of AI.

Noortje Marres is Professor of Science Technolpgy and Society at the Centre for Interdisciplinary Methodology at the University of Warwick and Guest Professor at Media of Cooperation Collaborative Research Centre at the University of Siegen. She published two monographs Material Participation (2012) and Digital Sociology (2017). 

Philippe Sormani is Senior Researcher and Co-Director of the Science and Technology Studies Lab at the University of Lausanne. Drawing on and developing ethnomethodology he has published on experimentation in and across different fields of activity ranging from experimental physics (in Re- specifying Lab Ethnography, 2014) to artistic experiments (in Practicing Art/Science, 2019). 

The paper »Testing ‘AI’: Do We Have a Situation?« is published as part of the Working Paper Series of the CRC 1187 which promotes inter- and transdisciplinary media research and provides an avenue for rapid publication and dissemination of ongoing research located at or associated with the CRC. The purpose of the series is to circulate in-progress research to the wider research community beyond the CRC. All Working Papers are accessible via the website.

Image caption: Ghost #8 (Memories of a mise en abîme with a bare back in front of an untamable tentacular screen), experimenting with OpenAI Dall-E, Maria Guta and Lauren Huret (Iris), 2022. (Courtesy of the artists)

“Seven moments with Bruno Latour” by Noortje Marres

Social Studies of Science has just published “Seven moments with Bruno Latour” by Noortje Marres, Professor in Science, Technology and Society at the Centre for Interdisciplinary Methodologies (University of Warwick) and founding member of the Public Data Lab.

The piece moves across memories, conversations and encounters from 1999 to 2022, situating explorations of issue mapping, controversy mapping, hyperlink analysis, ecological politics, feminist science and technology studies, modes of existence, protocols for collective inquiry, and arts-based methods.

An excerpt on “Limburg, 1999”:

It is a rainy afternoon in Limburg, in the south of the Netherlands. I have taken a local train from Maastricht to Kerkrade to visit Rolduc, a Catholic abbey that also hosts academic conferences, and where the Dutch Graduate School for Science, Technology and Modern Culture (WTMC) is holding a meeting. I have a poster with me, a map of the Genetically Modified Food debate on the Web, a circle of nodes representing the websites of organizations that take positions on the issue of GM Foods, and the hyperlinks that connect them. I made this poster with colleagues at the Jan van Eyck Academy, a post-graduate art school in Maastricht, where am working as a theorist-in-residence in the Design Department, as part of a team led by Richard Rogers, the media scholar, to develop digital methods of issue mapping.

It is wet and windy when I arrive in Kerkrade, and I approach the old, tall buildings of Rolduc abbey with what I can only call trepidation. Bruno has invited me to show our poster at the WTMC conference, but I am not at all sure that this was a good idea. I am not even a PhD student, and am based in an art school. I am a stranger. Fortunately, by the time I walk into the conference the poster session is about to start, and I am relieved that I can put my poster on the wall and simply stand there, next to my poster, in a clearly defined role. Bruno asks a lot of questions. Who are these organizations? What can the hyperlinks between them tell us about their ‘position’ in the controversy, and about the controversy itself? He does not ask: Why are you showing us a … data visualization? He does not ask: What are you doing, art or social science? He does not ask: If your poster presents a study of public controversy, then why are you doing this work in a graphic design department? Others join us and we have a conversation.

In 1999, to create what we would later call digital controversy maps was to step into an under-defined, interdisciplinary space. Our work at the Jan van Eyck Akademie brought together STS with design research, computing, internet studies and environmental politics, and at the time this did not make much institutional sense. Our work also looks strange. Indeed, how can one show a network visualisation and call it a debate? As it turned out Bruno Latour was strongly supportive of our approach: the development of interdisciplinary methods of inquiry, which combine social science with art and design, became one of his principal occupations in the decades that followed.

New paper: “Visual Models for Social Media Image Analysis: Groupings, Engagement, Trends, and Rankings”

A new article on “Visual Models for Social Media Image Analysis: Groupings, Engagement, Trends, and Rankings” co-authored by Public Data Lab researchers Gabriele ColomboLiliana Bounegru and Jonathan Gray has just been published in the International Journal of Communication (IJOC). It is available as an open access PDF. Here’s the abstract:

With social media image analysis, one collects and interprets online images for the study of topical affairs. This analytical undertaking requires formats for displaying collections of images that enable their inspection. First, we discuss features of social media images to make a case for studying them in groups (rather than individually): multiplicity, circulation, modification, networkedness, and platform specificity. In all, these offer reasons and means for an approach to social media image research that privileges the collection of images as its analytical object. Second, taking the 2019 Amazon rainforest fires as a case study, we present four visual models for analyzing collections of social media images. Each visual model matches a distinctive spatial arrangement with a type of analysis: grouping images by theme with clusters, surfacing dominant images and their engagement with treemaps, following image trends with plots, and comparing image rankings across platforms with grids.

New article: Staying with the trouble of networks

A new article on “Staying with the trouble of networks” co-authored by Daniela van GeenenJonathan Gray, Liliana BounegruTommaso VenturiniMathieu Jacomy and Axel Meunier has just been published in Frontiers in Big Data. It is available open access in html and PDF versions. Here’s the abstract:

Networks have risen to prominence as intellectual technologies and graphical representations, not only in science, but also in journalism, activism, policy, and online visual cultures. Inspired by approaches taking trouble as occasion to (re)consider and reflect on otherwise implicit knowledge practices, in this article we explore how problems with network practices can be taken as invitations to attend to the diverse settings and situations in which network graphs and maps are created and used in society. In doing so, we draw on cases from our research, engagement and teaching activities involving making networks, making sense of networks, making networks public, and making network tools. As a contribution to “critical data practice,” we conclude with some approaches for slowing down and caring for network practices and their associated troubles to elicit a richer picture of what is involved in making networks work as well as reconsidering their role in collective forms of inquiry.